118 research outputs found

    Ultrakurzzeitspektroskopie von Hemithioindigo und biophysikalisch relevanten Derivaten

    Get PDF
    Photoinduzierte Isomerisierungsreaktionen von Molekülen mit Kohlenstoff-Doppelbindungen sind an zahlreichen wichtigen biologischen und biochemischen Prozessen beteiligt. Ein grundlegendes Verständnis ihrer Reaktionsmechanismen ist deshalb von enormer Bedeutung. Wichtige Anwendungen von Molekülen mit Photoisomerisierungsreaktionen sind ihr Einsatz als mechanische Trigger in Peptidstrukturen oder als optische Datenspeicher. Diese Arbeit stellt eine spektroskopisch bisher unbearbeitete Verbindungsklasse vor, deren Struktur aus zwei verschiedenen Molekülen (Stilben, Thioindigo) zusammengesetzt ist. Die photochrome Verbindung Hemithioindigo isomerisiert im Pikosekundenzeitbereich. Im Rahmen der Arbeit kann gezeigt werden, dass spezielle Hemithioindigo-Derivate als Peptidschalter zum Studium initialer Faltungsprozesse eingesetzt werden können. Diese Demonstration erfordert die detaillierte spektroskopische Analyse der Z/E-Isomerisierungsreaktionen des Moleküls. Die vorliegende Arbeit behandelt dabei die folgenden Fragestellungen: 1) Nach welchem Mechanismus läuft die Z/E-Isomerisierung von Hemithioindigo ab?} Die Kombination verschiedener spektroskopischer Techniken (Absorptions-, Emissions- und Infrarotspektroskopie) erlaubt es, den kinetischen Ablauf der photoinduzierten Isomerisierungsreaktionen zu verfolgen. Unter Ausnutzung aller erzielten Resultate kann ein detailliertes Reaktionsmodell der Pikosekundenreaktionen Z-E und E-Z aufgestellt werden. 2) Wie können bestimmte Charakteristika der Isomerisierung, beispielsweise die Reaktionszeit, kontrolliert werden? Es wird gezeigt, dass die Reaktionsraten der photoinduzierten Isomerisierungen durch Potentialbarrieren im elektronisch angeregten Zustand bestimmt werden. Polare Substituenten erlauben es, die Barrierenhöhe systematisch zu verändern. Diese Effekte können sogar quantitativ durch das Konzept der linearen freien Enthalpie-Beziehung, der Hammett-Gleichung, beschrieben werden. Auf diese Weise kann die Reaktionsgeschwindigkeit kontrolliert und für unbekannte Substanzen vorhergesagt werden. Die Auswirkungen der Substituenten-Effekte auf unterschiedliche Parameter werden diskutiert und in ein gemeinsames Reaktionsmodell eingebettet. 3) Stilben vs. Thioindigo: Welcher Bestandteil dominiert die dynamischen Eigenschaften von Hemithioindigo? Zur Klärung dieser Frage werden die Ergebnisse der vorliegenden Arbeit mit Reaktionsmodellen von Stilben und Thioindigo verglichen. Es wird sehr deutlich, dass Hemithioindigo und Stilben in vielen Eigenschaften große Ähnlichkeiten aufweisen. 4) Sind Hemithioindigo-Derivate zur Untersuchung initialer Faltungsvorgänge in Chromopeptiden geeignet? Die Arbeit zeigt, dass Hemithioindigo-Aminosäuren als ultraschnelle mechanische Schalter in Peptidsystemen eingesetzt werden können. Dazu werden verschiedene auf Hemithioindigo basierende Pseudoaminosäuren und Chromopeptide vorgestellt. Untersuchungen dieser Modellpeptide zeigen, dass Hemithioindigo auch in Peptidstrukturen eine Isomerisierung ausführt und das Chromophor als spektroskopische Sonde für Peptidfaltungsprozesse genutzt werden kann. Hemithioindigo stellt somit eine vielversprechende Alternative zu bekannten molekularen Schaltern, wie z. B. Azobenzolderivaten, dar

    Ultrakurzzeitspektroskopie von Hemithioindigo und biophysikalisch relevanten Derivaten

    Get PDF
    Photoinduzierte Isomerisierungsreaktionen von Molekülen mit Kohlenstoff-Doppelbindungen sind an zahlreichen wichtigen biologischen und biochemischen Prozessen beteiligt. Ein grundlegendes Verständnis ihrer Reaktionsmechanismen ist deshalb von enormer Bedeutung. Wichtige Anwendungen von Molekülen mit Photoisomerisierungsreaktionen sind ihr Einsatz als mechanische Trigger in Peptidstrukturen oder als optische Datenspeicher. Diese Arbeit stellt eine spektroskopisch bisher unbearbeitete Verbindungsklasse vor, deren Struktur aus zwei verschiedenen Molekülen (Stilben, Thioindigo) zusammengesetzt ist. Die photochrome Verbindung Hemithioindigo isomerisiert im Pikosekundenzeitbereich. Im Rahmen der Arbeit kann gezeigt werden, dass spezielle Hemithioindigo-Derivate als Peptidschalter zum Studium initialer Faltungsprozesse eingesetzt werden können. Diese Demonstration erfordert die detaillierte spektroskopische Analyse der Z/E-Isomerisierungsreaktionen des Moleküls. Die vorliegende Arbeit behandelt dabei die folgenden Fragestellungen: 1) Nach welchem Mechanismus läuft die Z/E-Isomerisierung von Hemithioindigo ab?} Die Kombination verschiedener spektroskopischer Techniken (Absorptions-, Emissions- und Infrarotspektroskopie) erlaubt es, den kinetischen Ablauf der photoinduzierten Isomerisierungsreaktionen zu verfolgen. Unter Ausnutzung aller erzielten Resultate kann ein detailliertes Reaktionsmodell der Pikosekundenreaktionen Z-E und E-Z aufgestellt werden. 2) Wie können bestimmte Charakteristika der Isomerisierung, beispielsweise die Reaktionszeit, kontrolliert werden? Es wird gezeigt, dass die Reaktionsraten der photoinduzierten Isomerisierungen durch Potentialbarrieren im elektronisch angeregten Zustand bestimmt werden. Polare Substituenten erlauben es, die Barrierenhöhe systematisch zu verändern. Diese Effekte können sogar quantitativ durch das Konzept der linearen freien Enthalpie-Beziehung, der Hammett-Gleichung, beschrieben werden. Auf diese Weise kann die Reaktionsgeschwindigkeit kontrolliert und für unbekannte Substanzen vorhergesagt werden. Die Auswirkungen der Substituenten-Effekte auf unterschiedliche Parameter werden diskutiert und in ein gemeinsames Reaktionsmodell eingebettet. 3) Stilben vs. Thioindigo: Welcher Bestandteil dominiert die dynamischen Eigenschaften von Hemithioindigo? Zur Klärung dieser Frage werden die Ergebnisse der vorliegenden Arbeit mit Reaktionsmodellen von Stilben und Thioindigo verglichen. Es wird sehr deutlich, dass Hemithioindigo und Stilben in vielen Eigenschaften große Ähnlichkeiten aufweisen. 4) Sind Hemithioindigo-Derivate zur Untersuchung initialer Faltungsvorgänge in Chromopeptiden geeignet? Die Arbeit zeigt, dass Hemithioindigo-Aminosäuren als ultraschnelle mechanische Schalter in Peptidsystemen eingesetzt werden können. Dazu werden verschiedene auf Hemithioindigo basierende Pseudoaminosäuren und Chromopeptide vorgestellt. Untersuchungen dieser Modellpeptide zeigen, dass Hemithioindigo auch in Peptidstrukturen eine Isomerisierung ausführt und das Chromophor als spektroskopische Sonde für Peptidfaltungsprozesse genutzt werden kann. Hemithioindigo stellt somit eine vielversprechende Alternative zu bekannten molekularen Schaltern, wie z. B. Azobenzolderivaten, dar

    Kinetic Modelling of Transport Inhibition by Substrates in ABC Importers

    Get PDF
    Prokaryotic ATP-binding cassette (ABC) importers require a substrate-binding protein (SBP) for the capture and delivery of the cognate substrate to the transmembrane domain (TMD) of the transporter. Various biochemical compounds have been identified that bind to the SBP but are not transported. The mechanistic basis for the ‘non-cognate’ substrates not being transported differs. Some non-cognate substrates fail to trigger the appropriate conformational change in the SBP, resulting in loss of affinity for the TMD or the inability to allosterically activate transport. In another mechanism, the SBP cannot release the bound non-cognate substrate. Here, we used rate equations to derive the steady-state transport rate of cognate substrates of an ABC importer and investigated how non-cognate substrates influence this rate. We found that under limiting non-cognate substrate concentrations, the transport rate remains unaltered for each of the mechanisms. In contrast, at saturating substrate and SBP concentrations, the effect of the non-cognate substrate depends heavily on the respective mechanism. For instance, the transport rate becomes zero when the non-cognate substrate cannot be released by the SBP. Yet it remains unaffected when substrate release is possible but the SBP cannot dock onto the TMDs. Our work shows how the different mechanisms of substrate inhibition impact the transport kinetics, which is relevant for understanding and manipulating solute fluxes and hence the propagation of cells in nutritionally complex milieus

    Single-Molecule Observation of Ligand Binding and Conformational Changes in FeuA

    Get PDF
    The specific binding of ligands by proteins and the coupling of this process to conformational changes is fundamental to protein function. We designed a fluorescence-based single-molecule assay and data analysis procedure that allows the simultaneous real-time observation of ligand binding and conformational changes in FeuA. The substrate-binding protein FeuA binds the ligand ferri-bacillibactin and delivers it to the ATP-binding cassette importer FeuBC, which is involved in bacterial iron uptake. The conformational dynamics of FeuA was assessed via Förster resonance energy transfer, whereas the presence of the ligand was probed by fluorophore quenching. We reveal that ligand binding shifts the conformational equilibrium of FeuA from an open to a closed conformation. Ligand binding occurs via an induced-fit mechanism, i.e., the ligand binds to the open state and subsequently triggers a rapid closing of the protein. However, FeuA also rarely samples the closed conformation without the involvement of the ligand. This shows that ligand interactions are not required for conformational changes in FeuA. However, ligand interactions accelerate the conformational change 10,000-fold and temporally stabilize the formed conformation 250-fold

    Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy

    Get PDF
    Modern fluorescence microscopy applications go along with increasing demands for the employed fluorescent dyes. In this work, we compared antifading formulae utilizing a recently developed reducing and oxidizing system (ROXS) with commercial antifading agents. To systematically test fluorophore performance in fluorescence imaging of biological samples, we carried out photobleaching experiments using fixed cells labeled with various commonly used organic dyes, such as Alexa 488, Alexa 594, Alexa 647, Cy3B, ATTO 550, and ATTO 647N. Quantitative evaluation of (i) photostability, (ii) brightness, and (iii) storage stability of fluorophores in samples mounted in different antifades (AFs) reveal optimal combinations of dyes and AFs. Based on these results we provide guidance on which AF should preferably be used with a specific dye. Finally, we studied the antifading mechanisms of the commercial AFs using single-molecule spectroscopy and reveal that these empirically selected AFs exhibit similar properties to ROXS AFs

    Forster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multiscale molecular rulers

    Get PDF
    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Forster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble

    Caging and Photoactivation in Single-Molecule Forster Resonance Energy Transfer Experiments

    Get PDF
    Caged organic fluorophores are established tools for localization-based super-resolution imaging. Their use relies on reversible deactivation of standard organic fluorophores by chemical reduction or commercially available caged dyes with ON switching of the fluorescent signal by ultraviolet (UV) light. Here, we establish caging of cyanine fluorophores and caged rhodamine dyes, i.e., chemical deactivation of fluorescence, for single-molecule Forster resonance energy transfer (smFRET) experiments with freely diffusing molecules. They allow temporal separation and sorting of multiple intramolecular donor acceptor pairs during solution-based smFRET. We use this "caged FRET" methodology for the study of complex biochemical species such as multisubunit proteins or nucleic acids containing more than two fluorescent labels. Proof-of-principle experiments and a characterization of the uncaging process in the confocal volume are presented. These reveal that chemical caging and UV reactivation allow temporal uncoupling of convoluted fluorescence signals from, e.g., multiple spectrally similar donor or acceptor molecules on nucleic acids. We also use caging without UV reactivation to remove unwanted overlabeled species in experiments with the homotrimeric membrane transporter BetP. We finally outline further possible applications of the caged FRET methodology, such as the study of weak biochemical interactions, which are otherwise impossible with diffusion-based smFRET techniques because of the required low concentrations of fluorescently labeled biomolecules

    ABCE1 Controls Ribosome Recycling by an Asymmetric Dynamic Conformational Equilibrium

    Get PDF
    The twin-ATPase ABCE1 has a vital function in mRNA translation by recycling terminated or stalled ribosomes. As for other functionally distinct ATP-binding cassette (ABC) proteins, the mechanochemical coupling of ATP hydrolysis to conformational changes remains elusive. Here, we use an integrated biophysical approach allowing direct observation of conformational dynamics and ribosome association of ABCE1 at the single-molecule level. Our results from FRET experiments show that the current static two-state model of ABC proteins has to be expanded because the two ATP sites of ABCE1 are in dynamic equilibrium across three distinct conformational states: open, intermediate, and closed. The interaction of ABCE1 with ribosomes influences the conformational dynamics of both ATP sites asymmetrically and creates a complex network of conformational states. Our findings suggest a paradigm shift to redefine the understanding of the mechanochemical coupling in ABC proteins: from structure-based deterministic models to dynamic-based systems

    A New Class of Ultrafast Photoswitchable Chromopeptides

    Get PDF
    corecore